Computer Communications 34 (2011) 1283-1293

journal homepage: www.elsevier.com/locate/comcom

Contents lists available at ScienceDirect

Computer Communications

computer
communications

A CAPWAP-based solution for frequency planning in large scale networks

of WiFi Hot-Spots

M. Bernaschi?, F. Cacace®, A. Davoli€, D. Guerri€, M. Latini?, L. Vollero ”*

2 Istituto Applicazioni del Calcolo-CNR, Rome, Italy
b Universita Campus Bio-Medico, Rome, Italy
€CASPUR, Rome, Italy

ARTICLE INFO ABSTRACT

Article history:

Received 4 November 2009

Received in revised form 30 December 2010
Accepted 5 January 2011

Available online 7 January 2011

Keywords:

CAPWAP

Wireless networks
Network management
Frequency planning

We present the results of the experimental work we carried out to test a solution for frequency planning
developed for the Provincia di Roma network of WiFi Hot-Spots. This work is both an example of how the
Control And Provisioning of Wireless Access Points (CAPWAP) protocol may help in addressing the issues
that arise in the deployment and control of large scale, possibly heterogeneous, wireless networks and a
real-world test of our open source implementation of the CAPWAP protocol. Simulations and experimen-
tal tests confirm that the proposed technical solution is effective in improving network performance.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Large deployments of wireless Access Points (AP) pose serious
problems in defining consistent strategies for their management,
configuration and control. These issues forced network vendors to
propose proprietary centralized solutions aimed at simplifying the
administration of wireless networks. All proposed solutions share
two common elements: (i) they split functionalities that APs provide
and (ii) add more centralized functions for the monitoring and the
remote control of the network. By splitting functionalities of APs,
more flexible network infrastructures can be implemented. Indeed,
such separation allows to centralize the management of critical
functions like channel selection, authentication and encryption.
Whereas, leaving in the APs time-critical functions, like beacon gen-
eration and frames’ acknowledgment, avoids the introduction of
expensive components, like high performance interconnections,
making proposed solutions competitive on the market.

The Internet Engineering Task Force recently recognized the
importance of the interoperability in this field and started a Work-
ing Group, named Control and Provisioning of Wireless Access
Points (CAPWAP), with the goal of defining standard solutions to
such issues. The CAPWAP WG focused on problems like configura-
tion, monitoring, control and management of large scale deploy-
ments of wireless networks in general, and of IEEE 802.11
networks (O’Hara et al. [8]) in particular, by identifying a number
of functions that should be provided in such scenarios. The WG

* Corresponding author. Tel.: +39 06225419631.
E-mail address: vollero@ieee.org (L. Vollero).

0140-3664/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.comcom.2011.01.002

has defined a protocol, the CAPWAP protocol, capable of providing
interoperability among devices supporting these functions. In a re-
cent paper (Bernaschi et al. [3]), we presented our open source
implementation of the CAPWAP protocol based on Calhoun et al.
[1] and Calhoun et al. [2].

Here we present a real-world application of the CAPWAP proto-
col, that is a solution for frequency planning in a large-scale net-
work of wireless Access Points distributed across the city of
Rome (Italy) and its Provincia (a surrounding area roughly equiva-
lent to a county). The application represents both an architecture
and a technical solution with very few and limited predecessors.
Along with its description, we present simulations and experimen-
tal results obtained by testing the solution on real devices in a
number of different configurations and conditions.

The rest of the paper is organized as follows: Section 2 describes
the CAPWAP protocol, its functionalities for the management of
IEEE 802.11 networks and some recent additions and enhance-
ments to OpenCAPWAP, our open source implementation; Section 3
describes the main features of the Provincia di Roma WiFi network;
Section 4 describes the solution we developed for frequency plan-
ning of the Provincia di Roma WiFi network along with simulations
and performance results on real devices. Finally, Section 5 con-
cludes the paper with the future perspectives of this activity.

2. The CAPWAP protocol

The Control And Provisioning of Wireless Access Points (CAP-
WAP, Calhoun et al. [1]) is a recent effort of [ETF aiming at defining

1284 M. Bernaschi et al./ Computer Communications 34 (2011) 1283-1293

an interoperable protocol, enabling a single point of control, called
Access Controller (AC) to manage and control a collection of possi-
bly heterogeneous Wireless Termination Points (WTPs). Although
originating from IEEE 802.11 architectures, the CAPWAP specifica-
tions aim at being independent of a specific WTP radio technology.
The goals explicitly stated in current specifications of CAPWAP are
the following:

(i) centralize authentication and policy enforcement functions
for a wireless network;
(ii) move processing away from the WTPs, leaving there only
time critical functions and
(iii) provide a generic encapsulation and transport mechanism.

Currently the CAPWAP protocol defines the communication and
general management functions among AC and WTPs. CAPWAP con-
trol and data messages are sent by using UDP, over separate UDP
ports, and secured by using Datagram Transport Layer Security
(DTLS, Dierks et al. [7]). The CAPWAP protocol transport layer
introduces resiliency by using a request/response paradigm, where
timeouts schedule retransmissions when a response does not fol-
low a certain request. Two types of payload may be managed by
this transport protocol: CAPWAP data messages and CAPWAP con-
trol messages. CAPWAP data messages encapsulate wireless
frames forwarded by the WTP to the AC or by the AC to the WTP.
CAPWAP control messages are CAPWAP management, control or
monitoring messages exchanged among AC and WTPs. CAPWAP
also defines a discovery protocol for the automatic association of
WTPs to the AC.

The implementation of CAPWAP for a specific wireless technol-
ogy is called “binding”. For instance, (Calhoun et al. [2]) defines the
binding for IEEE 802.11 WLANSs. Specifically, (Calhoun et al. [2]) de-
vises two operational architectures: Split MAC (SM) and Local MAC

Discovery

DTLS Setup

DTLS Connect ——> Join

Image Data

F——=p> Configure

(LM). The difference between the two architectures is based on
where specific functionalities are implemented: in the WTP, in
the AC or in both. In both architectures, real-time IEEE 802.11 ser-
vices, including beacons generation and probe responses, are
implemented on the WTP (see OpenCapwap [9] for further details).
CAPWAP control messages for IEEE 802.11 are enriched by the
introduction of specific information for radio control, management
and monitoring. Moreover, special control frames for the Quality of
Service management using Wireless Multimedia (WMM) exten-
sions are defined in Calhoun et al. [2].

It is important to understand that CAPWAP, albeit based on the
same transport protocol (UDP) and aimed at the same goal (the
management of network devices), is pretty different with respect
to the Simple Network Management Protocol (SNMP). The SNMP
exposes management data in the form of variables on the managed
systems, which describe the system configuration. SNMP is more
general than CAPWAP. Most of the professional grade network de-
vices include an SNMP Agent that need to be enabled and config-
ured to communicate with the Network Management System
(NMS). There is a standard set of statistical and control values de-
fined for the managed devices on a network, however the exten-
sion of these standard values with values specific to a particular
device is, notoriously, a painful process. CAPWAP is, by definition,
restricted to the control of wireless Access Points but for these de-
vices it offers, independently from the wireless technology, a num-
ber of specific features and a generic encapsulation and transport
mechanism that make easier to extend its functionality as we de-
scribe in Section 2.1.

2.1. Protocol implementation and support for external application

The state diagram reported in Fig. 1 represents the lifecycle of a
WTP-AC session with a Finite State Machine (FSM), as defined in

A

STAN

Run

P>

R

AN

> Data Check

Fig. 1. CAPWAP finite state machine.

M. Bernaschi et al. / Computer Communications 34 (2011) 1283-1293 1285

the protocol specification (Calhoun et al. [1]). Use of DTLS by the
CAPWAP protocol results in the juxtaposition of two nominally
separate yet tightly bound state machines. The DTLS and CAPWAP
state machines are coupled through an API consisting of com-
mands and notifications. Certain transitions in the DTLS state ma-
chine are triggered by commands from the CAPWAP state machine,
while certain transitions in the CAPWAP state machine are trig-
gered by notifications from the DTLS state machine.

Our implementation of the CAPWAP protocol consists of two
multi-thread applications, one running on the ACs and one running
on the WTPs. Each WTP acts as a client of an AC. Each AC manages
both the communication with WTPs already registered and new
requests sent by WTPs not-yet registered. A much more detailed
description of our original implementation of the CAPWAP proto-
col can be found in [3]. In the rest of this section we describe our
more recent work aimed at extending the possibilities of the basic
CAPWAP protocol.

Our initial implementations of OpenCapwap did not offer sup-
port for generic external applications that needed CAPWAP proto-
col functionalities. A mechanism to address such issue has been
added to the latest, OpenCapwap 0.92 at the time of this writing,
implementation. This mechanism is based on an application man-
agement server added to the OpenCapwap AC daemon. Hereafter
we describe how such support works and how an application inter-
acts with OpenCapwap’s AC daemon to send and receive data not
strictly related to the CAPWAP protocol itself.

As Fig. 2 shows, in the basic architecture of OpenCapwap, there
are four main components:

e AC daemon: it implements CAPWAP Access Control functional-
ities and manages external applications via a dedicated thread
and a TCP server socket. The AC and external applications

exchange data by following a simple textual protocol (described
in Section 2.1.1).
e WTP daemon: it implements CAPWAP Wireless Termination
Point functionalities and interacts with external applications
by sending and receiving data after the CAPWAP protocol mes-
sages have been unpacked (by reading and removing CAPWAP
specific headers). The applications hereafter presented use a
UDP socket to this purpose.
External application (AC Side): by using the external applications
management protocol, it can retrieve the list of WTPs associated
to the AC (specified by the WTP id number and WTP name),
send data to a specific WTP (addressed by means of its WTP
id or WTP name) or to groups of the associated WTPs and
receive data from WTPs to which data were sent.
e External application (WTP Side): it exchanges data with Open-
Capwap’s WTP daemon by using a UDP socket.

2.1.1. AC architecture

Fig. 3 shows the new architecture of the AC. With respect to the
previous version of OpenCapwap, an additional thread, named
Application Management Thread (AMT), is present. The AMT listens
for incoming requests on a stream (TCP) socket so that external
applications, after having established a connection with this sock-
et, can send commands like:

e LIST_MSG: on response to this message the external application
receives the list of WTPs currently associated to the AC.

o CONF_UPDATE_MSG: a custom data payload can be sent by using
this command. It uses the Configuration Update Request and the
Configuration Update Response CAPWAP messages to send data
back and forth between the AC and one or more WTPs.
External applications may use the AC as a relay to reach any

External

Application
(AC Side)

External External
Application Application | -
(WTP Side) (WTP Side)

CAPWAP
Packets

External External
-------- Application Application
(WTP Side) (WTP Side)

Fig. 2. OpenCapwap 0.92 general architecture.

1286 M. Bernaschi et al. / Computer Communications 34 (2011) 1283-1293

External
Application
1

External
Application
2

External
. Application .
OpenCAPWAP
AC
CAPWAP Packet
Packets Socket Receiver
) Thread

External
Application
n

303005

Application
Management
Thread

WTP 1
: Management
“Thread

Timer
Thread

Fig. 3. OpenCapwap 0.92 AC architecture.

WTP by sending a message made up by: (i) the index represent-
ing the type of Configuration Update message to be sent; (ii) the
WTP identifier to which the payload must be sent to (or —1 to
address all associated WTPs) followed by (iii) the data payload
itself.

2.1.2. WTP architecture

For the WTP daemon, we resorted to the simple architecture
presented in Fig. 4. A datagram (UDP) socket is added to the main
WTP thread. During the processing of Configuration Update Request
messages, the data payload is handed through this socket to the
external application (if any). The external application (WTP side)
can then process such data payload and send a response back to

the external application by relaying data through the WTP daemon
(which forwards them to the AC daemon in a Configuration Update
Response message).

2.1.3. Sending commands to groups of Hot-Spots

As an example of usage of this architecture, we describe our
solution for sending commands to groups of Hot-Spots that make
use of OpenCapwap and OpenWrt, a GNU/Linux distribution for
low-powered, limited-hardware generic Access Points and more
in general for embedded devices (OpenWRT [6]).

The solution is based on two applications, the Uci Server (WTP
side) and the Remote Uci (AC side) that allow to configure WTPs by
using OpenWrt's Unified Command Interface (UCI). The goal of the

External
Application
External
,, Application
OpenCAPWAP
WTP
9]
[e)
Q
-
(0]
ot
Packet Frame
. 2.11
Receiver Main Receiver lilo”ames
Thread Thread Thread

CAPWAP ——
packets . | Socket

Fig. 4. OpenCapwap 0.92 WTP architecture.

M. Bernaschi et al./ Computer Communications 34 (2011) 1283-1293

UCI is to manage the administration of an entire OpenWrt system
from a single command line utility while providing many advanced
features such as custom configurations and configuration backup/
restore. Our goal was to bring UCI’s ease of use to the AC daemon.

To that purpose, the architecture of Fig. 2 becomes like that
shown in Fig. 5 where Remote Uci is a command line utility (writ-
ten in Python 2.5) interacting with OpenCapwap’s AC daemon via
the external application management mechanism presented
above. Remote Uci implements all the main commands provided
by OpenWrt’'s UCI plus some custom commands:

wtps: lists WTPs associated with the AC to which Remote Uci is
connected. This command is independent from UCI and it does
not generate any CAPWAP message but only data traffic
between Remote Uci and OpenCapwap’s AC daemon.

show: shows the current UCI configuration.

set: adds or modifies part of the UCI configuration.

delete: deletes part of the UCI configuration.

commit: permanently saves changes made to an UCI configura-
tion. Changes to the configuration are saved through a complete
restart of the services for which the configuration has been
changed. The autonomous restart of OpenWrt's services was
not supported by UCI but is part of the extended functionalities
offered by our Uci Server.

commitwithreboot: permanently saves changes made to the UCI
configuration. Changes to the configuration are saved by means
of a complete OpenWrt reboot. This command was not sup-

1287

ported by the original UCI and has been implemented from
the ground up.

o defaultrevert: restores a default fail-safe configuration (to which
Uci Server must be pointed to) and triggers a complete OpenWrt
reboot. Also this command was not supported by the original
UCL

All of the above commands, along with those of the original UCI,
are executed remotely from the AC on a single WTP or on a subset
of WTPs associated with the AC.

The data payloads that make this remote configuration mecha-
nism possible are rather simple. They are composed by an id that
identifies any of the above commands, the length of the command
arguments to be appended upon execution and the actual string of
command arguments. This simple payload is then handed to the AC
daemon through the TCP socket discussed above by encapsulating
the data in a Configuration Update Request message.

The WTP side counterpart of Remote Uci is Uci Server, a light-
weight daemon (written in C) that interacts with OpenCapwap’s
WTP and OpenWrt's UCL. When a Configuration Update Request con-
taining a specific data payload reaches a WTP, the WTP daemon,
after removing the CAPWAP header, hands the data payload to
the local Uci Server through an UDP socket. The Uci Server then exe-
cutes the requested UCI command and signals to the WTP daemon,
through the same UDP socket, the exit status of the command.
Additionally, Uci Server can also send back the output of the com-
mand executed. The WTP daemon then builds a new Configuration

(Remot

e Uci J

(Uci Server J (Uci Server J---(Uci Server J (Uci Server }

Uci
Command Line
Interface

Uci

Command Line
Interface

Uci Uci
Command Line

Interface

Command Line
Interface

Fig. 5. Example application architecture.

1288 M. Bernaschi et al. / Computer Communications 34 (2011) 1283-1293

Update Response that contains the data payload made up by the
exit status and the output of the UCI command executed (if any).
In such a way an administrator can operate on many WTPs by issu-
ing various UCI commands and receiving the corresponding output
from the WTPs to which those commands have been issued.

Despite being a pretty simple daemon, Uci Server implements a
quite sophisticated mechanism that prevents an administrator
from saving erroneous or corrupted UCI configurations that could
result in one or more unreachable WTPs. This functionality is avail-
able with the commands commit and commitwithreboot, which
are those that actually save any change to an UCI configuration.
All these software components are part of the current OpenCapwap
distribution.

3. The Provincia di Roma WiFi network

The Provincia di Roma WiFi network, developed and maintained
by CASPUR InterUniversity Consortium, is a project of the Provincia
surrounding and including the city of Rome (Italy). Provincia di
Roma includes about 120 cities with more than 4 million of inhab-
itants and it has an extension of about 5000 Km?.

In December 2009 the network consisted of more than 150 Ac-
cess Points, while within the end of 2010, at least 500 Access Points
will be available in public spots, like parks, libraries, government
buildings. The access to the network is granted after a registration
procedure (that is required only once) based on the exchange of
SMS messages. The ESSID is the same for all Access Points (provin-
ciawifi). The user provides the credentials received during the reg-
istration procedure through a captive portal.

Each Access Point sets up a Virtual Private Network with a con-
centrator, running GNU/Linux, which hosts multiple instances of
pfSense (pfSense [4]) through the KVM (KVM [5]) virtualization hy-
per-visor. Each pfSense instance is connected to the network back-
bone and provides, among other services, Internet connectivity to
the users.

All data required for the administration (e.g., the stock list of the
devices in use, users registration, etc.) and data collected during the
operations (e.g., syslog, firewall logs, etc.) are managed by using a
MySQL DBMS. An application based on the Google Maps API is used
to show, via browser, the availability status of the Hot-Spots.

4. A CAPWAP based solution for frequency planning

IEEE 802.11b defines a number (11, 13 or 14) of possible trans-
mission channels for wireless communications, depending on na-
tional regulations, but at most three of those channels can be
used simultaneously without cross-interference (namely Channel
1, Channel 6 and Channel 11). When configuring or upgrading large
deployments of WTPs, the configuration of frequencies used by
every WTP may be a major problem in optimizing overall network
performance. Optimal or sub-optimal frequencies reuse is desir-
able to reduce interference among adjacent cells, but this is not al-
ways possible.

4.1. Related work on frequency planning

There are many proposals in the literature to deal with the
problem of frequencies reuse in wireless networks. They can be
grouped in two main categories:

e approaches that aims at minimizing the overall interference by
using linear programming techniques. The problem is formu-
lated starting from the interference level at the WTPs (Akl
et al. [11]) or at the single mobile stations (Haidar et al. [12],
Al-Rizzo et al. [13], Lee et al. [14]). These approaches require

intensive computations, due to the complexity of the con-
straints, and are therefore suitable to static situations, where
the frequency assignment is computed only once or at large
intervals.

approaches that model the problem as a graph coloring problem
which is solved through some heuristic method (Mishra et al.
[15-17]). In this case, a sub-optimal solution is generally con-
sidered acceptable. The reduced computational complexity of
these methods makes them more suited to dynamical situations
where the frequency assignment needs to be modified more
frequently.

A method for the centralized management of channel allocation
should be capable of (i) taking advantage of the centralized nature
of the wireless LAN; (ii) dealing with dynamic situations, with
wide variations of stations distribution and throughput generated
at each WTP; (iii) being aware of the presence of external APs oper-
ating in the managed area but that are not controlled by the AC.

The third requirement adds additional constraints and it is not
uncommon due to the widespread diffusion of wireless home or
personal networks. In a publicly operated and geographically
sparse network, as the Provincia di Roma WiFi network, it is manda-
tory to consider external sources of interference, whereas this may
not be the case, for example, in a corporate WLAN. Most existing
proposals, however, focus on the case in which all the WTPs are
under the control of the manager of a centralized network (Levanti
et al. [10], Lee et al. [14], Arunesh et al. [18], Chandra et al. [19], Liu
et al. [20]).

A possible approach to the centralized management of chan-
nel allocation based on the CAPWAP protocol is presented in
(Levanti et al. [10]). It implements a variant of the algorithm pro-
posed in (Arunesh et al. [18]). The authors conclude that the
exploitation of a centralized management algorithm can avoid
not only the transient channel adjustments due to subsequent
and independent WTP decisions, but also the so-called blocked
cell problem, thanks to the complete knowledge of the network
topology. The blocked-cell phenomenon happens when a WTP
is located in proximity of a set of other WTPs that use the three
orthogonal channels, a situation not unrealistic in practice. In
these conditions, if the adjacent WTPs do not hear each other,
it is very likely that their transmissions are operated asynchro-
nously and, in presence of saturated traffic, the considered WTP
would sense the channel busy all the time. The blocked-cell ef-
fect can reduce the throughput of the affected cell to zero, with
the WTP waiting indefinitely for channel release. In the scheme
proposed by (Levanti et al. [10]), each WTP periodically scans
the channels in order to know all the potential interferences.
Once the scanning is over, each WTP sends a report to the Access
Controller indicating the identifiers of the interfering WTPs and
the reception power levels. On the basis of this information,
the centralized manager running on the AC assigns a channel
to the WTPs, while minimizing the total reciprocal interference
in the network. Since the number of orthogonal channels may
not be sufficient for covering the interfering cells, the planning
algorithm should try to assign orthogonal channels to the subset
of interfering cells which result most loaded, while trying to
avoid the blocked-cell phenomenon.

4.2. The iFP solution for frequency planning

The iFP algorithm that we present here is compliant with the
above requirements, and in particular:

e it has low computational complexity, thus allowing to cope well
with dynamic situations;

M. Bernaschi et al./ Computer Communications 34 (2011) 1283-1293 1289

o it is well suited for large deployments of WTPs that are sparsely
distributed in large areas and are affected by the interference of
WTPs belonging to other networks.

iFP extends the approach of (Liu et al. [20]) in two directions: it
takes into account environmental interference from outside the
centralized WLAN and it introduces a heuristic technique for
graph coloring based on the proposal of (Bhowmick et al. [21])
when several APs needs to be managed together (APs’ cluster).
However, the main goal of this section is not to highlight the orig-
inality or the performance of the iFP algorithm in itself. Rather, we
aim at validating the centralized management approach to fre-
quency planning in realistic scenarios, that are characterized by
a noisy environment, a non trivial network topology and stations
mobility. For this reason we compare the performance of iFP only
with static or local frequency planning techniques, rather than
with other centralized methods. It is however worth noting that
(i) to the best of our knowledge, no other frequency planning
algorithm considers the case of non managed APs operating in
the managed area; (ii) for simple network topologies (segregated
clusters of up to 4-6 WTPs) the allocation computed by iFP is the
same as the best possible allocation computed by enumerating
the possibilities.

In the sequel, we report results from extensive simulations on
the topology of the Provincia di Roma WiFi Network, as well as
experimental results from a laboratory test-bed. The choice of a
test-bed is motivated by the need of measuring the improvement
of performance (overall interference and saturation throughput)
with respect to the fixed assignment and to the local approach,
where each WTP chooses autonomously its own frequency based
on local measurements. This would be rather difficult with the Pro-
vincia di Roma WiFi network in its current state of deployment
since the WTPs’ and APs’ density is still too low to detect reliably
the improvement due to the centralized method.

4.3. A centralized algorithm for frequency planning

Let V ={a;} be the set of WTPs of the network, withi=1,...,n.V
includes WTPs of the managed network as well as external, non
managed APs. Let k be the number of non interfering wireless
channels. We say that a mobile station is active when, in a specified
time interval, it is transmitting or receiving data packets.

Definition 4.1. A channel assignment is a mapping
C:V-{1,2,...,k}.
Definition 4.2. The signal level function is a mapping

P:V xV — N° such that P(a;q;) = P(a;,a;) and P(a;,a;) = 0.

The function P(-,-) models the spatial WTPs distribution. It cor-
responds to the signal strength of the WTP g; received at the WTP
a;, which depends on the distance between the two WTPs. Our
analysis does not consider physical asymmetry in communication
channels. This assumption can be easily removed with minimal
changes in the following algorithms.

Definition 4.3. The neighborhood v(a;) of the WTP q;€V is
v(a;) ={a; € V: P(a;,a;) > 0}.

We consider P(a; a;) = 0 when P(a;,q;) < €, where ¢ is the min-
imum signal power level capable of introducing interferences.

Definition 4.4. An interference graph for a channel assignment is a
weighted oriented graph Gc= (V,E), where (a;,q;) € E iff a; € v(a;)
and the weight function wd{a;,a;) is

we(a;, a5) = sil(C(ay), Ca;))P(ai, aj) (1)

where

e s; is the number of active mobile stations associated to the WTP
a;.
e I(cy,c3) is the interference factor between channel ¢; and c,.

Notice that the interference graph depends on the channel
assignment and that in general wd(a;, a;) # wd(a;,a;), since s; is taken
into consideration. The value of I(c;,¢;) can be assigned for a given
PHY layer by means of empirical or theoretical methods. It must
be remarked that the assignment algorithm may only modify the
channel assignment of the managed WTPs, since the assignment
of the remaining APs is fixed.

Definition 4.5. The WTP interference function corresponding to a
channel assignment C is

n

Ie(@) =) we(a, @) (2)

a;ev(a;)

Definition 4.6. The network interference function corresponding
to a channel assignment C is

NeV) =3 le(a) 3)
i=1

The goal of the frequency planning algorithm is to minimize the
network interference function N under the constraint of fixed
channel assignments for non managed APs. The algorithm is shown
in Algorithm 1 and has two phases. In the first phase, which is an
extension of the method proposed in (Liu et al. [20]) and corre-
sponds to the function planningHeurCluster (S;) illustrated in
Algorithm 2, the set of managed WTPs is divided into disjoint clus-
ters according to the neighborhood relationship, and a local opti-
mization is performed on each cluster by ordering the WTPs
according to I{a;) and then finding for each managed WTP the
channel assignment that minimizes the value I{a;). In the second
step, which is based on the backtracking approach proposed in
(Bhowmick et al. [21]) and corresponds to the function planning-
ValidateCluster(S,j, |S|, bestValue, bestAssignment) of Algorithm 3, an
exhaustive search is performed on each cluster, starting from the
WTP with the largest I{a;). In order to avoid an exponential growth
of the search tree, the algorithm implements a pruning strategy
that removes failing branches that surely exceed the interference
value generated at the first step or the best temporary interference
value obtained during algorithm execution.

Algorithm 1 (Frequency planning algorithm.).

{51,S>,...,Sy are the connected clusters of the interference
graph G.}
{Each S; is an array which contains the WTPs of one cluster.}
{Si1],...,Si[L] are the elements of S;.}
{Si[k].channel is the channel assigned to WTP k of cluster i.}
fori=1to M do
if S; has just one element then
Si[1].channel — findBestChannel(Si[1])
else
clusterInterference — planningHeurCluster(S;)
S—S§;
planningValidateCluster(S, 1,|S;|, clusterinterference, S;)
end if
end for

1290 M. Bernaschi et al. / Computer Communications 34 (2011) 1283-1293

Algorithm 2 (Heuristic frequency assignment.).

planningHeurCluster(S)
stepIntValue « calculateNAS)
S « sortCluster(S)
S—S
repeat
actualintValue — stepIntValue
S—S
for i =1 to length(S) do
S[i].channel — findBestChannel(S[i])
end for
stepIntValue — calculateN¢(S)
until stepIntValue < actualintValue
return stepIntValue

Algorithm 3 (Exhaustive search with pruning.).

planningValidateCluster(S,j,|S|, bestValue, bestAssignment)
if j = |S| then
interference «— calculateN(S)
if interference < bestValue then
bestAssignment < S
bestValue — interference
end if
else
for c =1 to NUM_CHANNELS do
partialValue «— calculateNA[S[1],S[2],...,S[j — 1],c])
if partialValue < bestValue then
Slj].channel «— ¢
planningValidateCluster(S,j + 1,|S|, bestValue, bestAssignment)
end if
end for
end if

The function findBestChannel(-) finds the best channel for a WTP,
being fixed the configuration of all the other WTPs in the Hot-Spots
network. The function calculateN{S) computes the contribution of
cluster S to the network interference. The function sortCluster(S)
sorts the elements of S from the biggest to the lowest according
to the their interference value. Eventually |S| is the cardinality
(the number of elements) of cluster S.

4.4. Simulation analysis

The simulations analysis proposed in this section aims at eval-
uating the interference reduction that LCCS,' heuristic (iFP without
optimal search) and iFP configurations obtain with respect to a com-
pletely random assignment of channels.

We developed a custom simulator software in C++. The simula-
tor has a module for loading Hot-Spots network scenarios and a
module for generating random interfering APs. A clustering mod-
ule groups up the WTPs in interference sets based on power prop-
agation and radio sensitivity considerations. Assuming a free space
propagation model, this translates in a proximity rule: a WTP

1 Least Congested Channel Search: in this approach each WTP chooses the local
least congested channel without any coordination with neighbor WTPs. For each
WPTs’ cluster, the WTPs are randomly ordered and sequentially configured based on
this approach.

belongs to a WTPs group if another WTP in the group is closer than
about 100 m or if there is a STA in its range which is also in the
range (100 m) of another WTP of the group. Three configuration
modules implement the configuration algorithms, while a perfor-
mance evaluation module implements the Hot-Spots network
interference evaluation. In the configuration and performance
evaluation module we used the same propagation model that we
used in the clustering module.

The reference topology, composed of 244 WTPs, is the Provincia
di Roma WiFi Network (see Fig. 6). The metric we used in the com-
parison is the gain G defined as

Nc
Gs _ random

with s € {lccs, heuristic, iFP}
Nc;

The topology is populated with a random number of interfering APs
(uniform distribution in the 80 km x 80 km area of the Hot-Spots
network), with each AP choosing a random transmission channel
(uniform distribution in the set {1,2,...,11}). The APs densities
range has been chosen to respect real data collected in the network.
The number of stations connected to each WTP is also a uniform
random parameter. Accordingly to information collected in the real
network, we considered two cases: (i) low loaded networks with an
average number of connected stations ranging in the set {0,...,4}
and (ii) high loaded networks with an average number of connected
stations ranging in the set {0,...,8}. The average number of clusters
is 142, with the biggest clusters having four WTPs. The number of
interfering APs per cluster ranges from 0 to 2 when the lowest
APs density scenarios are considered and from 2 to 24 when we
consider the highest APs density scenarios.

Fig. 7 shows the gain, average value and 90% confidence inter-
val, for the low loaded network scenario and for various interfering
APs density. All the strategies introduce an interference reduction
slightly increasing with the increasing of the density of interfering
APs. The gain of heuristic and iFP is significantly higher than that of
pure LCCS, proving the needing of a centralized coordination of
WTPs in the solution of frequency planning. Heuristic configura-
tion is obviously outperformed by iFP, but in most cases the addi-
tional gain is negligible. The main reason of this low additional
gain is in the topology where there is a high number of low popu-
lated clusters where iFP and heuristic approaches define similar
configurations.

Fig. 8 shows the gain, average value and 90% confidence inter-
val, for the high loaded network scenario and for various interfer-
ing APs density. Also in this case the gain introduced by centralized
solutions is significantly higher than that obtainable by LCCS.
Although the gain increasing of heuristic and iFP is lower, the inter-
ference absolute value is slightly higher than that measured for
similar configurations in low loaded conditions. Indeed, the inter-
ference value for random configuration is a linear function of the
average number of connected stations.

Eventually, to stress further algorithms performance, we con-
sidered a very dense scenario where the interfering APs density
is of about 25 APs in each 100 x 100 m2. This translates in a
number of 78 APs interfering in a single cluster area in the worst
case. The average gains with respect to random configurations of
LCCS, Heuristic and iFP are about 6.8, 8.22 and 8.25, respectively.
The increased gain of LCCS can be explained with the increasing
impact that local interferences have when increasing node
density.

Simulations analysis proves that the optimal configuration
introduces significant reduction in the network interference met-
ric. This reduction, as it is shown in the following section, trans-
lates in a significant improvement in the performance that each
cluster of the Hot-Spots network can provide to users.

M. Bernaschi et al./ Computer Communications 34 (2011) 1283-1293 1291

80 T T T
A
A A A
A
A A ZA . a
A
60 |- A N u
A ” A A A
A éA A A
A AA
£ A AAA N
X N %AQA AaD
or S YN]
5o &
s %ﬁ fap e . 5
A A
A S s
A A N R A A .
A A A % A
A A
20 | a & Aa]
A
A
1 1 1
0 20 40 60 80
Km
Fig. 6. Provincia di Roma WTPs’ infrastructure topology.
20 T T T T T
18 |- 1
16 |- 1
14 | R
12 | 1
T / \
8 [.
6 [.
.
4
4 | u
lccs —a—
2+ heuristic —e— |
iFP —m—
1 1 1 1 1
0 0.5 1 1.5 2 25 3

AP density (Average Number of interfering APs per 100 m x 100 m)

Fig. 7. Average interference gain for low loaded network.

4.5. Experimental results

In this section we report the experimental results obtained by
using the frequency planning algorithm described above. The
implementation of the algorithm makes use of the CAPWAP proto-
col for the data exchange between the WTPs and the AC and the
commands for frequency assignments are issued by using the
mechanism described in Section 2.1.3. Among the many experi-
ments we carried out, we describe here those we consider more
significant, one concerning the resulting interference level among
WTPs and the other the effect on the throughput of the associated
stations.

The first experiments included 5 and 9 WTPs of the Provincia di
Roma WiFi network. These lightweight devices are based on the
alix31d1 board, with an AMD Geode processor at 433 MHz,

128 MB of RAM memory, and a permanent CompactFlash memory
of 1 GB. These devices were equipped with the openWRT operating
system, the openCAPWAP 0.92 client daemon and the frequency
planning application (client side). The Madwifi driver used on all
the WTP’s wireless cards of the testbed and the Provincia di Roma
WiFi network allows for a bgscan (background scan) operation as
well as for the creation of virtual interfaces. Thus each WTP can
discover the presence of non-managed APs in its vicinity by period-
ically scanning for their presence without service disruption.

In this experiment the managed network included 5 WTPs, 3 of
which formed a completely connected interference subgraph,
whereas the remaining two were connected by an interference
edge with one of the WTPs. In this scenario there were 14 addi-
tional APs, not managed through CAPWAP, that used random chan-
nels. The plot in the left part of Fig. 9 compares the overall network

1292 M. Bernaschi et al. / Computer Communications 34 (2011) 1283-1293

)
A
A\

il

V4

4]
lccs —a—
2 1cC]
heuristic —e—
iFP +—&—
1 1 1 1 1
0 0.5 1 15 2 25 3
AP density (Average Number of interfering APs per 100 m x 100 m)
Fig. 8. Average interference gain for high loaded network.
5
14
12 7 4
10 r
3
o 8 <)
6 r 2
4
1
2
0 0
LCCS iFP LCCS iFP

Fig. 9. Average gain value in the first scenario with 5 (left) and 9 (right) WTPs.

interference ratio for the assignment chosen by the LCCS algorithm
and the assignment determined by the iFP algorithm with respect
to an assignment where all the 5 WTPs are on channel 1. In the sec-
ond scenario, a different topology with 9 WTPs in 2 clusters is used.
In this case the number of external interfering WTPs was 30. As the
histograms show, in the former case the algorithm improves the
interference value, with a remarkable gain with respect to LCCS.
In the latter scenario, the reduced gain introduced by iFP with re-
spect to LCCS can be explained by the increased number of inter-
fering APs that constrains the algorithms to behave almost the
same.

In the second set of experiments we aimed at measuring the im-
pact of the interference among neighboring WTPs on the data traf-
fic and the behavior of the planning algorithm in presence of
station mobility. In these experiments we used 4 WTPs and 6 mo-
bile stations. The devices in both cases were HP tc4200 laptops
running Linux Ubuntu OS with kernel 2.6.15-26-386. The wireless
NICs used in the test-bed were NETGEAR WG511T PCI cards
equipped with an Atheros chipset and MADWiFi 0.9.2.1 open
source driver using the IEEE 802.11b PHY protocol.

In these experiments the interference graph was complete. Four
WTPs had one station associated to them, whereas the remaining
one had 3. Each station and WTP attempted to send and receive

an UDP traffic flow of 8 Mbps generated by the mgen tool, thus
the wireless channels were saturated. In this case there were 14
additional APs not managed through CAPWAP and with a lower
signal level, that used random channels.

The experiments underwent two phases, each one lasting 180 s.
In the second phase, two mobile stations migrated from one WTP
to another. The experiment was repeated for the frequency alloca-
tion schemes. In the fixed case, all the WTPs used the same channel
and this assignment was maintained in the two phases. In the LCCS
case, the local channel assignment was computed at the beginning
of each phase. In the iFP case, the algorithm was used to compute
dynamically the frequency allocation scheme. Each case was re-
peated three times, and the average throughput is reported, sepa-
rately for sent and received traffic, in Fig. 10. The throughput value
in the histogram corresponds to an average over 180 s among all
the stations. Notice also that LCCS requires to stop the network
traffic more often than iFP. Indeed, since it does not have a global
knowledge of the network, LCCS is more likely to change the fre-
quency of WTPs involved in the communication, while, in general,
iFP exhibits a more stable behavior. This stability lack of LCCS is
particularly exacerbated in big clusters of WTPs where LCCS may
generate unstable configurations and poor network performance
for connected users.

M. Bernaschi et al. / Computer Communications 34 (2011) 1283-1293 1293

5000 - . .

9
Q,
3 4000
iu)
=}
& 3000
o
=}
[¢]
2
<2000
o]
[}
>
s 1000
O
o
“

0

iFP fixed LCCS
5000 - . .

8. 4000 | 1
Q
S
2 3000
[oN
<
o
5
S 2000
<
)
)
g 1000
0

0

iFP fixed

LCCS

5000 - . .

0
Q,
3 4000
i)
=}
& 3000
o
=}
(o]
[
S 2000
o]
[}
>
s 1000
O
o
o

0

iFP fixed LCCS
5000 - . .

8. 4000 | 1
Q
=
s 3000
[oN
e}
o
3
S 2000
<
)
)
g 1000
0

iFP fixed

LCCS

Fig. 10. Throughput comparison for the mobility scenario, average throughput sent and received at the mobile stations, phase 1 (left) and phase 2 (right).

5. Conclusions

We presented a real-world application of OpenCAPWAP, an open
source implementation of the CAPWAP protocol. The results we
obtained confirm that CAPWAP functionalities for network moni-
toring are a valuable input to algorithms for network management
and configuration, while CAPWAP functionalities for network con-
trol are fundamental in the enforcement of policies triggered by
these algorithms. Our present work aims at using our CAPWAP
implementation as a building block of a comprehensive and auto-
nomic architecture for Hot-Spots network management, monitor-
ing and configuration.

Acknowledgment

We thank Andrea Del Moro, Federica Giovannini and Ludovico
Rossi for the development of the first prototype implementation
of the protocol. We thank Massimo Vellucci, Mauro Bisson and
Daniele de Sanctis for their efforts in improving and updating the
implementation of the protocols.

References

[1] P. Calhoun, M. Montemurro, D. Stanley, ‘CAPWAP Protocol Specification’,
Internet RFC 5415, IETF, March 2009.

[2] P. Calhoun, M. Montemurro, D. Stanley, ‘CAPWAP Protocol Binding for IEEE
802.11", Internet RFC 5416, IETF, March 2009.

[3] M. Bernaschi, F. Cacace, G. lannello, M. Vellucci, L. Vollero, OpenCAPWAP: an
open source CAPWAP implementation for the management and configuration
of WiFi Hot-Spots, Computer Networks 53 (2) (2009).

[4] pfSense, <http://www.pfsense.com/>.

[5] KVM, <http://www.linux-kvm.org>.

[6] OpenWRT, <http://openwrt.org>.

[7] T. Dierks, E. Rescorla, ‘The Transport Layer Security (TLS) Protocol Version 1.1’,
IETF, RFC 4346, April 2006.

[8] B. O’Hara, P. Calhoun,]. Kempf, Configuration and Provisioning for Wireless
Access Points (CAPWAP) Problem Statement, IETF, RFC 3990 (Informational),
February 2005.

[9] OpenCapwap, <http://capwap.sourceforge.net>.

[10] A. Levanti, F. Giordano, I. Tinnirello, A centralized approach for automatic
frequency planning in WLAN, in: Proceedings of MediaWiN 2007.

[11] R. Akl A. Arepally, Dynamic channel assignment in [EEE 802.11 Networks, in:
IEEE Portable 2007: International Conference on Portable Informations
Devices, May 2007, pp. 1-5.

[12] M. Haidar, R. Ghimire, H. Al-Rizzo, R. Ak, Y. Chan, Channel assignment in an
IEEE 802.11 based on signal-to-interference ratio, in: IEEE CCECE: Canadian
Conference on Electrical and Computer Engineering: Communications and
Networking, May 2008, 2008, pp. 1169-1174.

[13] H. Al-Rizzo, M. Haidar, R. AKkl, Y. Chan, Enhanced channel assignment and load
distribution in IEEE 802.11 WLANSs, in: Proceedings of IEEE International
Conference on Signal Processing and Communications, November 2007, pp.
768-771.

[14] Y. Lee, K. Kim, Y. Choi, Optimization of AP placement and channel assignment
in wireless LANS, in: Proceeding of the 27th IEEE Annual Conference on Local
Computer Networks (LCN), November 2002, pp. 831-836.

[15] A. Mishra, S. Banerjee, W. Arbaugh, Using partially overlapped channels in
wireless meshes, in: Proceedings IEEE Wimesh, 2005.

[16] A. Mishra, S. Banerjee, W. Arbaugh, Weighted coloring based channel
assignment for WLANs, ACM SIGMOBILE Mobile Computing and
Communications Review 9 (3) (2005) 19-31.

[17] A. Mishra, E. Rozner, S. Banerjee, W. Arbaugh, Exploiting partially overlapping
channels in wireless networks: turning a peril into an advantage, in:
Proceedings of the ACM SIGCOMM]/Usenix Internet Measurement Conference
ICM 05, 2005, pp. 311-315.

[18] M. Arunesh, V. Shrivastava, S. Banerjee, W. Arbaugh, Partially overlapped
channels not considered harmful, in: Proceedings of the Joint International
Conference on Measurement and Modeling of Computer Systems, 2006, pp.
63-74.

[19] R. Chandra, P. Bahl, P. Bahl, Multinet: connecting to multiple IEEE 802.11
networks using a single wireless card, in: Proceedings IEEE INFOCOM 2004,
23rd Annual Joint Conference of IEEE Computer and Communications
Societies, vol. 2, 2004, pp. 882-893.

[20] H. Liu, H. Yu, X. Liu, C. Chuah, P. Mohapatra, Scheduling multiple partially
overlapped channels in wireless mesh networks, in: Proceedings of the IEEE
International Conference on Communications, ICC '07, 2007, pp. 3817-3822.

[21] S. Bhowmick, P. Hovland, A backtracking correction heuristic for improving
performance of graph coloring algorithms, in: Proceedings of the Second
International Workshop on Combinatorial Scientific Computing, 2005.

